Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 183: 106400, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36750148

RESUMO

The cell-penetrating peptides (CPPs) Tat and penetratin are frequently explored as shuttles for drug delivery across the blood-brain barrier (BBB). CPPs are often labelled with fluorophores for analytical purposes, with 5(6)-carboxytetramethylrhodamine (TAMRA) being a popular choice. However, TAMRA labelling affects the physicochemical properties of the resulting fluorophore-CPP construct when compared to the CPP alone. Selenomethionine (MSe) may be introduced as alternative label, which, due to its small size and amino acid nature, likely results in minimal alterations of the peptide physicochemical properties. With this study we compared, head-to-head, the effect of MSe and TAMRA labelling of Tat and penetratin with respect to their physicochemical properties, and investigated effects hereof on brain capillary endothelial cell (BCEC) models. TAMRA labelling positively affected the ability of the peptides to adhere to the cell membranes as well being internalized into the BCECs when compared to MSe labelling. TAMRA labelling of penetratin added toxicity to the BCECs to a higher extent than TAMRA labelling of Tat, whereas MSe labelling did not affect the cellular viability. Both TAMRA and MSe labelling of penetratin decreased the barrier integrity of BCEC monolayers, but not to an extent that improved transport of the paracellular marker 14C-mannitol. In conclusion, MSe labelling of Tat and penetratin adds minimal alterations to the physicochemical properties of these CPPs and their resulting effects on BCECs, and thereby represents a preferred alternative to TAMRA for peptide quantification purposes.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Selenometionina , Barreira Hematoencefálica , Transporte Biológico , Corantes Fluorescentes
2.
Anal Bioanal Chem ; 413(26): 6479-6488, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34458946

RESUMO

In the present study, a method for quantitation of the pharmaceutical peptide oxytocin (OT) and its diselenide-containing analogue (SeOT) in human plasma was developed using gradient elution LC-ICP-MS/MS. Plasma samples were precipitated with acetonitrile containing 1.0% TFA in a volume ratio of 1+3 (sample+precipitation agent) before analysis. Post-column isotope dilution analysis (IDA) was applied for quantitation and was compared with external calibration. Both calibration methods appeared to be fit for purpose regarding figures of merit including linearity, precision, LOD, LOQ and recovery. Analysis of OT and SeOT showed that selenium-based analysis is considerably more sensitive and selective compared to the sulfur-based analysis. Despite the relatively simpler setup of external calibration, IDA can be advantageous because it compensates for instrument drift and changes in organic solvent concentration. The method was applied for a stability study showing the degradation of OT and SeOT in plasma. The degradation of SeOT was faster than the degradation of OT in plasma. Thus, possible stability effects should be considered before replacing a disulfide bridge with a diselenide bridge or introducing a diselenide label in a potential drug.


Assuntos
Ocitócicos/sangue , Ocitocina/sangue , Selênio/sangue , Calibragem , Cromatografia Líquida/métodos , Humanos , Técnicas de Diluição do Indicador , Limite de Detecção , Ocitócicos/análise , Ocitocina/análogos & derivados , Selênio/análise , Espectrometria de Massas em Tandem/métodos
3.
Anal Bioanal Chem ; 413(8): 2247-2255, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33580829

RESUMO

Nanoparticles (NPs) are increasingly applied in research and development of new therapies. Characterization of NP systems most often include size, shape, size distribution, and charge but information on the chemical stability of NPs and investigation of the presence of dissolved species is most often missing in efficacy studies due to lack of appropriate methods. In this study, a method based on capillary electrophoresis coupled to inductively coupled plasma mass spectrometry (CE-ICP-MS) was established for analysis of selenium (Se) NPs and dissolved Se species in aqueous media. Peak area and migration time precisions (RSD) of 1.4-3.0% and 1.0-2.6%, respectively, were obtained. CE-ICP-MS analysis of a commercially available SeNP suspension (Q-SeNP) revealed large amounts of selenite corresponding to 32% of the total Se content in the suspension, indicating considerable NP degradation upon storage. The CE-ICP-MS method was modified using a coated fused silica capillary in order to analyze SeNPs in human plasma. Peak area and migration time precisions (RSD) in the range of 3.3-10.7% and 0.8-2.8%, respectively, were achieved. Degradation of polyvinyl alcohol (PVA)-coated SeNPs to selenite in human plasma was demonstrated using the modified method. The amounts of SeNP and selenite were estimated based on a correction factor for the ICP-MS signals of PVA-SeNP and dissolved Se. To the best of our knowledge, this is the first study of SeNPs by CE-ICP-MS and highlights the potential of CE-ICP-MS for quantitative characterization of the behavior of SeNPs in biological media.


Assuntos
Nanopartículas/análise , Selênio/sangue , Eletroforese Capilar/métodos , Humanos , Espectrometria de Massas/métodos , Nanopartículas/metabolismo , Selênio/análise , Selênio/metabolismo
4.
Metallomics ; 6(9): 1639-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25027387

RESUMO

The aim of the present work was to demonstrate how selenium labelling of a synthetic cell-penetrating peptide may be employed in evaluation of stability and quantitative estimation of cellular uptake by inductively coupled plasma mass spectrometry (ICP-MS). Two analogues of the cell-penetrating peptide, penetratin, were synthesized, one with selenomethionine (SeMet) added at the N-terminal of the peptide (N-PenM(Se)) and the other with the internal methionine (Met) replaced with SeMet (i-PenM(Se)). The purity of the synthesized peptides was 92% for N-PenM(Se) and 89% for i-PenM(Se) as determined by liquid chromatography (LC)-ICP-MS. The selenium-labelled peptides were investigated by cell uptake studies in HeLa WT cells. The stability of the peptides was monitored in water, cell medium and during cell uptake studies. Total uptake of selenium was quantified by flow injection (FI)-ICP-MS. Speciation analysis of cell samples by LC-ICP-MS showed mainly uptake of the intact peptides, while the amount of intact peptides in cell lysates was semi-quantitatively determined. The selenium-containing penetratin analogues were to some extent degraded in pure cell medium, while an extensive degradation was observed during cell uptake studies. The major degradation products were determined by LC-electrospray ionization mass spectrometry (ESI-MS). The labelling method in combination with FI-ICP-MS, LC-ICP-MS and LC-ESI-MS techniques provided detailed information on the fate of penetratin in cellular uptake studies. Most pharmaceutical peptides, including penetratin, are synthetic analogues of endogenous peptides, and incorporation of selenium may improve the critical assessment of the native drug or drug delivery candidate early in the drug development process.


Assuntos
Peptídeos/análise , Preparações Farmacêuticas/análise , Selênio/análise , Coloração e Rotulagem , Sequência de Aminoácidos , Extratos Celulares , Endocitose , Células HeLa , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química
5.
Metallomics ; 6(2): 330-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24413471

RESUMO

A suspension of nanoparticles of BSA-stabilized red amorphous elemental selenium (Se) or an aqueous solution of sodium selenite was repeatedly administered by oral gavage for 28 days at 0.05 mg kg(-1) bw per day (low dose) or at 0.5 mg kg(-1) bw per day (high dose) as Se to female rats. Prior to administration, the size distribution of the Se nanoparticles was characterized by dynamic light scattering and transmission electron microscopy, which showed that the particles' mean diameter was 19 nm and ranged in size from 10 to 80 nm. Following administration of the high dose of Se nanoparticles or selenite the concentration of Se was determined by ICP-MS in the liver, kidney, urine, feces, stomach, lungs, and plasma at the µg g(-1) level and in brain and muscle tissue at the sub-µg g(-1) level. In order to test if any elemental Se was present in the liver, kidney or feces, an in situ derivatization selective to elemental Se was performed by treatment with sulfite, which resulted in formation of the selenosulfate anion. This Se species was selectively and quantitatively determined by anion exchange HPLC and ICP-MS detection. The results showed that elemental Se was present in the livers, kidneys and feces of animals exposed to low and high doses of elemental Se nanoparticles or to selenite, and was also detected in the same samples from control animals. The fraction of Se present as elemental Se in livers and kidneys from the high dose animals was significantly larger than the similar fraction in samples from the low dose animals or from the controls. This suggested that the natural metabolic pathways of Se were exhausted when given the high dose of elemental Se or selenite resulting in a non-metabolized pool of elemental Se. Both dosage forms of Se were bioavailable as demonstrated by the blood biomarker selenoprotein P, which was equally up-regulated in the high-dose animals for both dosage forms of Se. Finally, the excretion of Se in urine and its occurrence as Se-methylseleno-N-acetyl-galactosamine and the trimethylselenonium-ion demonstrated that both dosage forms were metabolized and excreted. The results of the study showed that both forms of Se were equally absorbed, distributed, metabolized and excreted, but the detailed mechanism of the fate of the administered elemental Se or selenite in the gastro-intestinal tract of rats remains unclear.


Assuntos
Nanopartículas/administração & dosagem , Ácido Selenioso/administração & dosagem , Selênio/metabolismo , Selênio/farmacocinética , Absorção , Administração Oral , Animais , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Feminino , Trato Gastrointestinal/metabolismo , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Ratos , Ratos Wistar , Selênio/administração & dosagem , Selênio/urina , Selenoproteína P/sangue , Espectrofotometria Atômica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...